Sparse Versus Simple Structure Loadings
Nickolay Trendafilov () and
Kohei Adachi
Psychometrika, 2015, vol. 80, issue 3, 776-790
Abstract:
The component loadings are interpreted by considering their magnitudes, which indicates how strongly each of the original variables relates to the corresponding principal component. The usual ad hoc practice in the interpretation process is to ignore the variables with small absolute loadings or set to zero loadings smaller than some threshold value. This, in fact, makes the component loadings sparse in an artificial and a subjective way. We propose a new alternative approach, which produces sparse loadings in an optimal way. The introduced approach is illustrated on two well-known data sets and compared to the existing rotation methods. Copyright The Psychometric Society 2015
Keywords: principal component analysis; factor analysis; orthogonal and oblique rotations; sparseness-inducing constraints; LASSO constraints; projected gradients (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-014-9416-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:80:y:2015:i:3:p:776-790
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-014-9416-y
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().