How General is the Vale–Maurelli Simulation Approach?
Njål Foldnes () and
Steffen Grønneberg
Psychometrika, 2015, vol. 80, issue 4, 1066-1083
Abstract:
The Vale–Maurelli (VM) approach to generating non-normal multivariate data involves the use of Fleishman polynomials applied to an underlying Gaussian random vector. This method has been extensively used in Monte Carlo studies during the last three decades to investigate the finite-sample performance of estimators under non-Gaussian conditions. The validity of conclusions drawn from these studies clearly depends on the range of distributions obtainable with the VM method. We deduce the distribution and the copula for a vector generated by a generalized VM transformation, and show that it is fundamentally linked to the underlying Gaussian distribution and copula. In the process we derive the distribution of the Fleishman polynomial in full generality. While data generated with the VM approach appears to be highly non-normal, its truly multivariate properties are close to the Gaussian case. A Monte Carlo study illustrates that generating data with a different copula than that implied by the VM approach severely weakens the performance of normal-theory based ML estimates. Copyright The Psychometric Society 2015
Keywords: Vale–Maurelli; simulation; Monte Carlo; multivariate distributions; copula (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-014-9414-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:80:y:2015:i:4:p:1066-1083
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-014-9414-0
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().