A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data
Monia Ranalli () and
Roberto Rocci
Additional contact information
Monia Ranalli: The Pennsylvania State University
Psychometrika, 2017, vol. 82, issue 4, No 6, 1007-1034
Abstract:
Abstract The literature on clustering for continuous data is rich and wide; differently, that one developed for categorical data is still limited. In some cases, the clustering problem is made more difficult by the presence of noise variables/dimensions that do not contain information about the clustering structure and could mask it. The aim of this paper is to propose a model for simultaneous clustering and dimensionality reduction of ordered categorical data able to detect the discriminative dimensions discarding the noise ones. Following the underlying response variable approach, the observed variables are considered as a discretization of underlying first-order latent continuous variables distributed as a Gaussian mixture. To recognize discriminative and noise dimensions, these variables are considered to be linear combinations of two independent sets of second-order latent variables where only one contains the information about the cluster structure while the other one contains noise dimensions. The model specification involves multidimensional integrals that make the maximum likelihood estimation cumbersome and in some cases infeasible. To overcome this issue, the parameter estimation is carried out through an EM-like algorithm maximizing a composite log-likelihood based on low-dimensional margins. Examples of application of the proposal on real and simulated data are performed to show the effectiveness of the proposal.
Keywords: mixture models; reduction ordinal data; composite likelihood (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-017-9578-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:82:y:2017:i:4:d:10.1007_s11336-017-9578-5
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-017-9578-5
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().