A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing
Chun Wang (),
Gongjun Xu and
Zhuoran Shang
Additional contact information
Chun Wang: University of Minnesota
Gongjun Xu: University of Minnesota
Zhuoran Shang: University of Minnesota
Psychometrika, 2018, vol. 83, issue 1, No 11, 223-254
Abstract:
Abstract Statistical methods for identifying aberrances on psychological and educational tests are pivotal to detect flaws in the design of a test or irregular behavior of test takers. Two approaches have been taken in the past to address the challenge of aberrant behavior detection, which are (1) modeling aberrant behavior via mixture modeling methods, and (2) flagging aberrant behavior via residual based outlier detection methods. In this paper, we propose a two-stage method that is conceived of as a combination of both approaches. In the first stage, a mixture hierarchical model is fitted to the response and response time data to distinguish normal and aberrant behaviors using Markov chain Monte Carlo (MCMC) algorithm. In the second stage, a further distinction between rapid guessing and cheating behavior is made at a person level using a Bayesian residual index. Simulation results show that the two-stage method yields accurate item and person parameter estimates, as well as high true detection rate and low false detection rate, under different manipulated conditions mimicking NAEP parameters. A real data example is given in the end to illustrate the potential application of the proposed method.
Keywords: MCMC; Bayesian residual index; hierarchical mixture model; response times (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-016-9525-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-016-9525-x
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-016-9525-x
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().