A Generalized Speed–Accuracy Response Model for Dichotomous Items
Peter W. Rijn () and
Usama S. Ali
Additional contact information
Peter W. Rijn: ETS Global
Usama S. Ali: Educational Testing Service
Psychometrika, 2018, vol. 83, issue 1, No 6, 109-131
Abstract:
Abstract We propose a generalization of the speed–accuracy response model (SARM) introduced by Maris and van der Maas (Psychometrika 77:615–633, 2012). In these models, the scores that result from a scoring rule that incorporates both the speed and accuracy of item responses are modeled. Our generalization is similar to that of the one-parameter logistic (or Rasch) model to the two-parameter logistic (or Birnbaum) model in item response theory. An expectation–maximization (EM) algorithm for estimating model parameters and standard errors was developed. Furthermore, methods to assess model fit are provided in the form of generalized residuals for item score functions and saddlepoint approximations to the density of the sum score. The presented methods were evaluated in a small simulation study, the results of which indicated good parameter recovery and reasonable type I error rates for the residuals. Finally, the methods were applied to two real data sets. It was found that the two-parameter SARM showed improved fit compared to the one-parameter SARM in both data sets.
Keywords: response times; speed–accuracy; scoring rules; item response theory; expectation–maximization; generalized residuals; saddlepoint approximations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-017-9590-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9590-9
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-017-9590-9
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().