EconPapers    
Economics at your fingertips  
 

Direct Schmid–Leiman Transformations and Rank-Deficient Loadings Matrices

Niels G. Waller ()
Additional contact information
Niels G. Waller: University of Minnesota

Psychometrika, 2018, vol. 83, issue 4, No 5, 858-870

Abstract: Abstract The Schmid–Leiman (S–L; Psychometrika 22: 53–61, 1957) transformation is a popular method for conducting exploratory bifactor analysis that has been used in hundreds of studies of individual differences variables. To perform a two-level S–L transformation, it is generally believed that two separate factor analyses are required: a first-level analysis in which k obliquely rotated factors are extracted from an observed-variable correlation matrix, and a second-level analysis in which a general factor is extracted from the correlations of the first-level factors. In this article, I demonstrate that the S–L loadings matrix is necessarily rank deficient. I then show how this feature of the S–L transformation can be used to obtain a direct S–L solution from an unrotated first-level factor structure. Next, I reanalyze two examples from Mansolf and Reise (Multivar Behav Res 51: 698–717, 2016) to illustrate the utility of ‘best-fitting’ S–L rotations when gauging the ability of hierarchical factor models to recover known bifactor structures. Finally, I show how to compute direct bifactor solutions for non-hierarchical bifactor structures. An online supplement includes R code to reproduce all of the analyses that are reported in the article.

Keywords: bifactor; Schmid Leiman; hierarchical factor analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11336-017-9599-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-017-9599-0

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-017-9599-0

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-017-9599-0