EconPapers    
Economics at your fingertips  
 

Automated Item Generation with Recurrent Neural Networks

Matthias von Davier ()
Additional contact information
Matthias von Davier: National Board of Medical Examiners

Psychometrika, 2018, vol. 83, issue 4, No 4, 847-857

Abstract: Abstract Utilizing technology for automated item generation is not a new idea. However, test items used in commercial testing programs or in research are still predominantly written by humans, in most cases by content experts or professional item writers. Human experts are a limited resource and testing agencies incur high costs in the process of continuous renewal of item banks to sustain testing programs. Using algorithms instead holds the promise of providing unlimited resources for this crucial part of assessment development. The approach presented here deviates in several ways from previous attempts to solve this problem. In the past, automatic item generation relied either on generating clones of narrowly defined item types such as those found in language free intelligence tests (e.g., Raven’s progressive matrices) or on an extensive analysis of task components and derivation of schemata to produce items with pre-specified variability that are hoped to have predictable levels of difficulty. It is somewhat unlikely that researchers utilizing these previous approaches would look at the proposed approach with favor; however, recent applications of machine learning show success in solving tasks that seemed impossible for machines not too long ago. The proposed approach uses deep learning to implement probabilistic language models, not unlike what Google brain and Amazon Alexa use for language processing and generation.

Keywords: deep learning; neural networks; automatic item generation; machine learning (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-018-9608-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-018-9608-y

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-018-9608-y

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-018-9608-y