Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods
Edgar C. Merkle (),
Daniel Furr and
Sophia Rabe-Hesketh
Additional contact information
Edgar C. Merkle: University of Missouri
Daniel Furr: University of California, Berkeley
Psychometrika, 2019, vol. 84, issue 3, No 8, 802-829
Abstract:
Abstract Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software code for model definitions (using, e.g., BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on the latent variables. This can lead researchers to perform model comparisons via conditional likelihoods, where the latent variables are considered model parameters. In other settings, however, typical model comparisons involve marginal likelihoods where the latent variables are integrated out. This distinction is often overlooked despite the fact that it can have a large impact on the comparisons of interest. In this paper, we clarify and illustrate these issues, focusing on the comparison of conditional and marginal Deviance Information Criteria (DICs) and Watanabe–Akaike Information Criteria (WAICs) in psychometric modeling. The conditional/marginal distinction corresponds to whether the model should be predictive for the clusters that are in the data or for new clusters (where “clusters” typically correspond to higher-level units like people or schools). Correspondingly, we show that marginal WAIC corresponds to leave-one-cluster out cross-validation, whereas conditional WAIC corresponds to leave-one-unit out. These results lead to recommendations on the general application of the criteria to models with latent variables.
Keywords: Bayesian information criteria; conditional likelihood; cross-validation; DIC; IRT; leave-one-cluster out; marginal likelihood; MCMC; SEM; WAIC (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-019-09679-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:84:y:2019:i:3:d:10.1007_s11336-019-09679-0
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-019-09679-0
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().