EconPapers    
Economics at your fingertips  
 

Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions

Alessandro Barbiero and Asmerilda Hitaj ()
Additional contact information
Asmerilda Hitaj: Università degli Studi dell’Insubria

Psychometrika, 2020, vol. 85, issue 4, No 4, 905-925

Abstract: Abstract We consider a bivariate normal distribution with linear correlation $$\rho $$ ρ whose random components are discretized according to two assigned sets of thresholds. On the resulting bivariate ordinal random variable, one can compute Goodman and Kruskal’s gamma coefficient, $$\gamma $$ γ , which is a common measure of ordinal association. Given the known analytical monotonic relationship between Pearson’s $$\rho $$ ρ and Kendall’s rank correlation $$\tau $$ τ for the bivariate normal distribution, and since in the continuous case, Kendall’s $$\tau $$ τ coincides with Goodman and Kruskal’s $$\gamma $$ γ , the change of this association measure before and after discretization is worth studying. We consider several experimental settings obtained by varying the two sets of thresholds, or, equivalently, the marginal distributions of the final ordinal variables. This study, confirming previous findings, shows how the gamma coefficient is always larger in absolute value than Kendall’s rank correlation; this discrepancy lessens when the number of categories increases or, given the same number of categories, when using equally probable categories. Based on these results, a proposal is suggested to build a bivariate ordinal variable with assigned margins and Goodman and Kruskal’s $$\gamma $$ γ by ordinalizing a bivariate normal distribution. Illustrative examples employing artificial and real data are provided.

Keywords: Bivariate normal distribution; Discretization; Gamma coefficient; Latent variable; Ordinal association (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-020-09730-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:85:y:2020:i:4:d:10.1007_s11336-020-09730-5

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-020-09730-5

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-08
Handle: RePEc:spr:psycho:v:85:y:2020:i:4:d:10.1007_s11336-020-09730-5