EconPapers    
Economics at your fingertips  
 

On the Quantification of Model Uncertainty: A Bayesian Perspective

David Kaplan ()
Additional contact information
David Kaplan: University of Wisconsin–Madison

Psychometrika, 2021, vol. 86, issue 1, No 8, 215-238

Abstract: Abstract Issues of model selection have dominated the theoretical and applied statistical literature for decades. Model selection methods such as ridge regression, the lasso, and the elastic net have replaced ad hoc methods such as stepwise regression as a means of model selection. In the end, however, these methods lead to a single final model that is often taken to be the model considered ahead of time, thus ignoring the uncertainty inherent in the search for a final model. One method that has enjoyed a long history of theoretical developments and substantive applications, and that accounts directly for uncertainty in model selection, is Bayesian model averaging (BMA). BMA addresses the problem of model selection by not selecting a final model, but rather by averaging over a space of possible models that could have generated the data. The purpose of this paper is to provide a detailed and up-to-date review of BMA with a focus on its foundations in Bayesian decision theory and Bayesian predictive modeling. We consider the selection of parameter and model priors as well as methods for evaluating predictions based on BMA. We also consider important assumptions regarding BMA and extensions of model averaging methods to address these assumptions, particularly the method of Bayesian stacking. Simple empirical examples are provided and directions for future research relevant to psychometrics are discussed.

Keywords: Bayesian model averaging; Bayesian stacking; prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09754-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:86:y:2021:i:1:d:10.1007_s11336-021-09754-5

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-021-09754-5

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:86:y:2021:i:1:d:10.1007_s11336-021-09754-5