On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence
Domingo Morales (),
Joscha Krause and
Jan Pablo Burgard
Additional contact information
Domingo Morales: University Miguel Hernández de Elche
Joscha Krause: Trier University
Jan Pablo Burgard: Trier University
Psychometrika, 2022, vol. 87, issue 1, No 14, 344-368
Abstract:
Abstract Major depression is a severe mental disorder that is associated with strongly increased mortality. The quantification of its prevalence on regional levels represents an important indicator for public health reporting. In addition to that, it marks a crucial basis for further explorative studies regarding environmental determinants of the condition. However, assessing the distribution of major depression in the population is challenging. The topic is highly sensitive, and national statistical institutions rarely have administrative records on this matter. Published prevalence figures as well as available auxiliary data are typically derived from survey estimates. These are often subject to high uncertainty due to large sampling variances and do not allow for sound regional analysis. We propose a new area-level Poisson mixed model that accounts for measurement errors in auxiliary data to close this gap. We derive the empirical best predictor under the model and present a parametric bootstrap estimator for the mean squared error. A method of moments algorithm for consistent model parameter estimation is developed. Simulation experiments are conducted to show the effectiveness of the approach. The methodology is applied to estimate the major depression prevalence in Germany on regional levels crossed by sex and age groups.
Keywords: empirical best prediction; generalized linear mixed model; method of moments; parametric bootstrap; small area estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09808-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09808-8
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-021-09808-8
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().