A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation
Steffen Nestler () and
Sarah Humberg
Additional contact information
Steffen Nestler: University of Münster, Institut für Psychologie
Sarah Humberg: University of Münster, Institut für Psychologie
Psychometrika, 2022, vol. 87, issue 2, No 6, 506-532
Abstract:
Abstract Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.
Keywords: mixed-effect models; longitudinal data; within-person variability; lasso regression; regression trees (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09787-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09787-w
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-021-09787-w
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().