Modeling Faking in the Multidimensional Forced-Choice Format: The Faking Mixture Model
Susanne Frick ()
Additional contact information
Susanne Frick: Department of Psychology, School of Social Sciences
Psychometrika, 2022, vol. 87, issue 2, No 15, 773-794
Abstract:
Abstract The multidimensional forced-choice (MFC) format has been proposed to reduce faking because items within blocks can be matched on desirability. However, the desirability of individual items might not transfer to the item blocks. The aim of this paper is to propose a mixture item response theory model for faking in the MFC format that allows to estimate the fakability of MFC blocks, termed the Faking Mixture model. Given current computing capabilities, within-subject data from both high- and low-stakes contexts are needed to estimate the model. A simulation showed good parameter recovery under various conditions. An empirical validation showed that matching was necessary but not sufficient to create an MFC questionnaire that can reduce faking. The Faking Mixture model can be used to reduce fakability during test construction.
Keywords: multidimensional forced-choice; faking; item response theory; mixture model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09818-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09818-6
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-021-09818-6
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().