An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model
Jimmy de la Torre (),
Xue-Lan Qiu and
Kevin Carl Santos
Additional contact information
Jimmy de la Torre: The University of Hong Kong
Xue-Lan Qiu: The University of Hong Kong
Kevin Carl Santos: University of the Philippines
Psychometrika, 2022, vol. 87, issue 2, No 12, 693-724
Abstract:
Abstract A number of empirically based Q-matrix validation methods are available in the literature, all of which were developed for cognitive diagnosis models (CDMs) involving dichotomous attributes. However, in many applications, it is more instructionally relevant to classify students into more than two categories (e.g., no mastery, basic mastery, and advanced mastery). To extend the practical utility of CDMs, methods for validating the Q-matrix for CDMs that measure polytomous attributes are needed. This study focuses on validating the Q-matrix of the generalized deterministic input, noisy, “and” gate model for polytomous attributes (pG-DINA). The pGDI, an extension of the G-DINA model discrimination index, is proposed for polytomous attributes. The pGDI serves as the basis of a validation method that can be used not only to identify potential misspecified q-entries, but also to suggest more appropriate attribute-level specifications. The theoretical properties of the pGDI are underpinned by several mathematical proofs, whereas its practical viability is examined using simulation studies covering various conditions. The results show that the method can accurately identify misspecified q-entries and suggest the correct attribute-level specifications, particularly when high-quality items are involved. The pGDI is applied to a proportional reasoning test that measures several polytomous attributes.
Keywords: cognitive diagnosis models; G-DINA; Q-matrix validation; polytomous attributes (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09821-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09821-x
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-021-09821-x
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().