Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
Mia J. K. Kornely and
Maria Kateri ()
Additional contact information
Mia J. K. Kornely: RWTH Aachen University
Maria Kateri: RWTH Aachen University
Psychometrika, 2022, vol. 87, issue 3, No 16, 1146-1172
Abstract:
Abstract The asymptotic posterior normality (APN) of the latent variable vector in an item response theory (IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broad class of latent trait models for binary items. Under the same setup, they also showed the consistency of the latent trait’s maximum likelihood estimator (MLE). Since then, several modeling approaches have been developed that consider multivariate latent traits and assume their APN, a conjecture which has not been proved so far. We fill this theoretical gap by extending the results of Chang and Stout for multivariate latent traits. Further, we discuss the existence and consistency of MLEs, maximum a-posteriori and expected a-posteriori estimators for the latent traits under the same broad class of latent trait models.
Keywords: multidimensional item response theory; empirical Bayes; posterior distribution; ability estimation; consistency; normal approximation; Bernstein–von Mises theorem (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-021-09838-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09838-2
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-021-09838-2
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().