EconPapers    
Economics at your fingertips  
 

Item Response Thresholds Models: A General Class of Models for Varying Types of Items

Gerhard Tutz ()
Additional contact information
Gerhard Tutz: Ludwig-Maximilians-Universität München

Psychometrika, 2022, vol. 87, issue 4, No 3, 1238-1269

Abstract: Abstract A comprehensive class of models is proposed that can be used for continuous, binary, ordered categorical and count type responses. The difficulty of items is described by difficulty functions, which replace the item difficulty parameters that are typically used in item response models. They crucially determine the response distribution and make the models very flexible with regard to the range of distributions that are covered. The model class contains several widely used models as the binary Rasch model and the graded response model as special cases, allows for simplifications, and offers a distribution free alternative to count type items. A major strength of the models is that they can be used for mixed item formats, when different types of items are combined to measure abilities or attitudes. It is an immediate consequence of the comprehensive modeling approach that allows that difficulty functions automatically adapt to the response distribution. Basic properties of the model class are shown. Several real data sets are used to illustrate the flexibility of the models

Keywords: thresholds model; latent trait models; item response theory; graded response model; Rasch model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-022-09865-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09865-7

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-022-09865-7

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09865-7