Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation
Hiroshi Tamano () and
Daichi Mochihashi
Additional contact information
Hiroshi Tamano: The Graduate University for Advanced Studies, SOKENDAI
Daichi Mochihashi: The Institute of Statistical Mathematics
Psychometrika, 2023, vol. 88, issue 2, No 6, 487-526
Abstract:
Abstract Multidimensional item response theory (MIRT) is a statistical test theory that precisely estimates multiple latent skills of learners from the responses in a test. Both compensatory and non-compensatory models have been proposed for MIRT: the former assumes that each skill can complement other skills, whereas the latter assumes they cannot. This non-compensatory assumption is convincing in many tests that measure multiple skills; therefore, applying non-compensatory models to such data is crucial for achieving unbiased and accurate estimation. In contrast to tests, latent skills will change over time in daily learning. To monitor the growth of skills, dynamical extensions of MIRT models have been investigated. However, most of them assumed compensatory models, and a model that can reproduce continuous latent states of skills under the non-compensatory assumption has not been proposed thus far. To enable accurate skill tracing under the non-compensatory assumption, we propose a dynamical extension of non-compensatory MIRT models by combining a linear dynamical system and a non-compensatory model. This results in a complicated posterior of skills, which we approximate with a Gaussian distribution by minimizing the Kullback–Leibler divergence between the approximated posterior and the true posterior. The learning algorithm for the model parameters is derived through Monte Carlo expectation maximization. Simulation studies verify that the proposed method is able to reproduce latent skills accurately, whereas the dynamical compensatory model suffers from significant underestimation errors. Furthermore, experiments on an actual data set demonstrate that our dynamical non-compensatory model can infer practical skill tracing and clarify differences in skill tracing between non-compensatory and compensatory models.
Keywords: item response theory; knowledge tracing; Kalman filter; linear dynamical systems; variational approximation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-023-09903-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09903-y
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-023-09903-y
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().