Commentary: Explore Conditional Dependencies in Item Response Tree Data
Minjeong Jeon ()
Additional contact information
Minjeong Jeon: University of California, Los Angeles
Psychometrika, 2023, vol. 88, issue 3, No 4, 803-808
Abstract:
Abstract Item response tree (IRTree) models are widely used in various applications for their ability to differentiate sets of sub-responses from polytomous item response data based on a pre-specified tree structure. Lyu et al. (Psychometrika) article highlighted that item slopes are often lower for later nodes than earlier nodes in IRTree applications. Lyu et al. argued that this phenomenon might signal the presence of item-specific factors across nodes. In this commentary, I present a different perspective that conditional dependencies in IRTree data could explain the phenomenon more generally. I illustrate my point with an empirical example, utilizing the latent space item response model that visualizes conditional dependencies in IRTree data. I conclude the commentary with a discussion on the potential of exploring conditional dependencies in IRTree data that goes beyond identifying the sources of conditional dependencies.
Keywords: IRTree models; polytomous item responses; conditional dependencies; latent space item response models; interaction map (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11336-023-09915-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09915-8
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-023-09915-8
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().