EconPapers    
Economics at your fingertips  
 

Sparse and Simple Structure Estimation via Prenet Penalization

Kei Hirose () and Yoshikazu Terada
Additional contact information
Kei Hirose: Kyushu University
Yoshikazu Terada: Osaka University

Psychometrika, 2023, vol. 88, issue 4, No 11, 1406 pages

Abstract: Abstract We propose a prenet (product-based elastic net), a novel penalization method for factor analysis models. The penalty is based on the product of a pair of elements in each row of the loading matrix. The prenet not only shrinks some of the factor loadings toward exactly zero but also enhances the simplicity of the loading matrix, which plays an important role in the interpretation of the common factors. In particular, with a large amount of prenet penalization, the estimated loading matrix possesses a perfect simple structure, which is known as a desirable structure in terms of the simplicity of the loading matrix. Furthermore, the perfect simple structure estimation via the proposed penalization turns out to be a generalization of the k-means clustering of variables. On the other hand, a mild amount of the penalization approximates a loading matrix estimated by the quartimin rotation, one of the most commonly used oblique rotation techniques. Simulation studies compare the performance of our proposed penalization with that of existing methods under a variety of settings. The usefulness of the perfect simple structure estimation via our proposed procedure is presented through various real data applications.

Keywords: multivariate analysis; quartimin rotation; penalized maximum likelihood estimation; perfect simple structure; sparse estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11336-022-09868-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09868-4

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-022-09868-4

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-022-09868-4