Estimating and Using Block Information in the Thurstonian IRT Model
Susanne Frick ()
Additional contact information
Susanne Frick: University of Mannheim
Psychometrika, 2023, vol. 88, issue 4, No 17, 1556-1589
Abstract:
Abstract Multidimensional forced-choice (MFC) tests are increasing in popularity but their construction is complex. The Thurstonian item response model (Thurstonian IRT model) is most often used to score MFC tests that contain dominance items. Currently, in a frequentist framework, information about the latent traits in the Thurstonian IRT model is computed for binary outcomes of pairwise comparisons, but this approach neglects stochastic dependencies. In this manuscript, it is shown how to estimate Fisher information on the block level. A simulation study showed that the observed and expected standard errors based on the block information were similarly accurate. When local dependencies for block sizes $$>\,2$$ > 2 were neglected, the standard errors were underestimated, except with the maximum a posteriori estimator. It is shown how the multidimensional block information can be summarized for test construction. A simulation study and an empirical application showed small differences between the block information summaries depending on the outcome considered. Thus, block information can aid the construction of reliable MFC tests.
Keywords: multidimensional forced-choice; Thurstonian IRT model; information; standard errors; automated test assembly (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-023-09931-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-023-09931-8
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-023-09931-8
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().