EconPapers    
Economics at your fingertips  
 

Differential Item Functioning via Robust Scaling

Peter F. Halpin ()
Additional contact information
Peter F. Halpin: University of North Carolina at Chapel Hill

Psychometrika, 2024, vol. 89, issue 3, No 4, 796-821

Abstract: Abstract This paper proposes a method for assessing differential item functioning (DIF) in item response theory (IRT) models. The method does not require pre-specification of anchor items, which is its main virtue. It is developed in two main steps: first by showing how DIF can be re-formulated as a problem of outlier detection in IRT-based scaling and then tackling the latter using methods from robust statistics. The proposal is a redescending M-estimator of IRT scaling parameters that is tuned to flag items with DIF at the desired asymptotic type I error rate. Theoretical results describe the efficiency of the estimator in the absence of DIF and its robustness in the presence of DIF. Simulation studies show that the proposed method compares favorably to currently available approaches for DIF detection, and a real data example illustrates its application in a research context where pre-specification of anchor items is infeasible. The focus of the paper is the two-parameter logistic model in two independent groups, with extensions to other settings considered in the conclusion.

Keywords: item response theory; differential item functioning; test scaling and equating; robust statistics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-024-09957-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:89:y:2024:i:3:d:10.1007_s11336-024-09957-6

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-024-09957-6

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:89:y:2024:i:3:d:10.1007_s11336-024-09957-6