Extended Asymptotic Identifiability of Nonparametric Item Response Models
Yinqiu He ()
Additional contact information
Yinqiu He: University of Wisconsin-Madison
Psychometrika, 2024, vol. 89, issue 3, No 10, 958-973
Abstract:
Abstract Nonparametric item response models provide a flexible framework in psychological and educational measurements. Douglas (Psychometrika 66(4):531–540, 2001) established asymptotic identifiability for a class of models with nonparametric response functions for long assessments. Nevertheless, the model class examined in Douglas (2001) excludes several popular parametric item response models. This limitation can hinder the applications in which nonparametric and parametric models are compared, such as evaluating model goodness-of-fit. To address this issue, We consider an extended nonparametric model class that encompasses most parametric models and establish asymptotic identifiability. The results bridge the parametric and nonparametric item response models and provide a solid theoretical foundation for the applications of nonparametric item response models for assessments with many items.
Keywords: nonparametric item response theory; identifiability; asymptotic theory (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-024-09972-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:89:y:2024:i:3:d:10.1007_s11336-024-09972-7
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-024-09972-7
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().