Bayesian Adaptive Lasso for Detecting Item–Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models
Na Shan () and
Ping-Feng Xu
Additional contact information
Na Shan: Northeast Normal University
Ping-Feng Xu: Northeast Normal University
Psychometrika, 2024, vol. 89, issue 4, No 12, 1337-1365
Abstract:
Abstract In multidimensional tests, the identification of latent traits measured by each item is crucial. In addition to item–trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid comparison among different groups. The two problems are investigated separately in the literature. This paper uses a unified framework for detecting item–trait relationship and DIF in multidimensional item response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive Lasso procedure is developed for variable selection, in which item–trait relationship and DIF effects can be obtained simultaneously. Simulation studies show the performance of our method for parameter estimation, the recovery of item–trait relationship and the detection of DIF effects. An application is presented using data from the Eysenck Personality Questionnaire.
Keywords: Bayesian adaptive Lasso; item–trait relationship; differential item functioning; multidimensional item response theory model; regularization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11336-024-09998-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:89:y:2024:i:4:d:10.1007_s11336-024-09998-x
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-024-09998-x
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().