Thematic content analysis using supervised machine learning: An empirical evaluation using German online news
Michael Scharkow ()
Quality & Quantity: International Journal of Methodology, 2013, vol. 47, issue 2, 773 pages
Abstract:
In recent years, two approaches to automatic content analysis have been introduced in the social sciences: semantic network analysis and supervised text classification. We argue that, although less linguistically sophisticated than semantic parsing techniques, statistical machine learning offers many advantages for applied communication research. By using manually coded material for training, supervised classification seamlessly bridges the gap between traditional and automatic content analysis. In this paper, we briefly introduce the conceptual foundations of machine learning approaches to text classification and discuss their application in social science research. We then evaluate their potential in an experimental study in which German online news was coded with established thematic categories. Moreover, we investigate whether and how linguistic preprocessing can improve classification quality. Results indicate that supervised text classification is generally robust and reliable for some categories, but may even be useful when it fails. Copyright Springer Science+Business Media B.V. 2013
Keywords: Content analysis; Machine learning; Online news; Bayesian classifier (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-011-9545-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:47:y:2013:i:2:p:761-773
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-011-9545-7
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().