Evaluating a sequential tree-based procedure for multivariate imputation of complex missing data structures
Riccardo Borgoni and
Ann Berrington
Quality & Quantity: International Journal of Methodology, 2013, vol. 47, issue 4, 2008 pages
Abstract:
Item nonresponse in survey data can pose significant problems for social scientists carrying out statistical modeling using a large number of explanatory variables. A number of imputation methods exist but many only deal with univariate imputation, or relatively simple cases of multivariate imputation, often assuming a monotone pattern of missingness. In this paper we evaluate a tree-based approach for multivariate imputation using real data from the 1970 British Cohort Study, known for its complex pattern of nonresponse. The performance of this tree-based approach is compared to mode imputation and a sequential regression based approach within a simulation study. Copyright Springer Science+Business Media B.V. 2013
Keywords: Missing data; Sequential imputation; Classification tree; 1970 British Birth Cohort (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-011-9638-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:47:y:2013:i:4:p:1991-2008
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-011-9638-3
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().