EconPapers    
Economics at your fingertips  
 

An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption

A. Azadeh (), M. Saberi and A. Gitiforouz

Quality & Quantity: International Journal of Methodology, 2013, vol. 47, issue 4, 2163-2176

Abstract: This paper introduces an integrated algorithm for forecasting electricity consumption (EL) based on fuzzy regression, time series and principal component analysis (PCA) in uncertain markets such as Iran. The algorithm is examined by mean absolute percentage error, analysis of variance (ANOVA) and Duncan Multiple Range Test. PCA is used to identify the input variables for the fuzzy regression and time series models. Monthly EL in Iran is used to show the superiority of the algorithm. Moreover, it is shown that the selected fuzzy regression model has better estimated values for total EL than time series. The algorithm provides as good results as intelligent methods. However, it is shown that the algorithm does not require utilization of preprocessing methods but genetic algorithm, artificial neural network and fuzzy inference system require preprocessing which could be a cumbersome task to deal with ambiguous data. The unique features of the proposed algorithm are three fold. First, two type of fuzzy regressions with and without preprocessed data are prescribed by the algorithm in order to minimize the bias. Second, it uses PCA approach instead of trial and error method for selecting the most important input variables. Third, ANOVA is used to statistically compare fuzzy regression and time series with actual data. Copyright Springer Science+Business Media B.V. 2013

Keywords: Electricity consumption; Fuzzy regression; Principal component analysis; Preprocessing; Time series; Uncertainty (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-011-9649-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:47:y:2013:i:4:p:2163-2176

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135

DOI: 10.1007/s11135-011-9649-0

Access Statistics for this article

Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi

More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:qualqt:v:47:y:2013:i:4:p:2163-2176