The development of delinquency during adolescence: a comparison of missing data techniques
Jost Reinecke () and
Cornelia Weins ()
Quality & Quantity: International Journal of Methodology, 2013, vol. 47, issue 6, 3319-3334
Abstract:
Conclusions on the development of delinquent behaviour during the life-course can only be made with longitudinal data, which is regularly gained by repeated interviews of the same respondents. Missing data are a problem for the analysis of delinquent behaviour during the life-course shown with data from an adolescents’ four-wave panel. In this article two alternative techniques to cope with missing data are used: full information maximum likelihood estimation and multiple imputation. Both methods allow one to consider all available data (including adolescents with missing information on some variables) in order to estimate the development of delinquency. We demonstrate that self-reported delinquency is systematically underestimated with listwise deletion (LD) of missing data. Further, LD results in false conclusions on gender and school specific differences of the age–crime relationship. In the final discussion some hints are given for further methods to deal with bias in panel data affected by the missing process. Copyright Springer Science+Business Media B.V. 2013
Keywords: Full information maximum likelihood estimation; Multiple imputation; Growth curve models; Development of delinquency; Age–crime relationship (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-012-9721-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:47:y:2013:i:6:p:3319-3334
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-012-9721-4
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().