Incorporating support vector machines with multiple criteria decision making for financial crisis analysis
Ming-Fu Hsu () and
Ping-Feng Pai ()
Quality & Quantity: International Journal of Methodology, 2013, vol. 47, issue 6, 3492 pages
Abstract:
Feature selection is an essential pre-processing technique in data mining that eliminates redundant or unrepresentative attributes and improves the performance of classifiers. However, a classifier with different feature selection approaches results in diverse outcomes. Thus, determining how to integrate feature selection methods and yield an appropriate feature set is an issue worth further study. Based on ensemble learning, this investigation develops a SVMMCDM (support vector machines with multiple criteria decision making) model that employs various feature selection techniques as data preprocessing schemes and then uses SVM for financial crisis prediction. The study uses MCDM to determine the most suitable feature selection mechanism when many performance criteria are considered. After the feature selection mechanism has been determined, the study decomposes the SVM to obtain support vectors and predicted labels which are then fed into a decision tree to generate rules. The numerical results for the ex-ante and ex-post periods relative to the financial tsunami show that the proposed SVMMCDM model is an effective way to predict a financial crisis and can provide useful rules for decision makers. Copyright Springer Science+Business Media B.V. 2013
Keywords: Financial crisis; Feature selection; Multiple criteria decision making; Support vector machines; Rule generation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-012-9735-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:47:y:2013:i:6:p:3481-3492
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-012-9735-y
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().