Reasoning under uncertainty and multi-criteria decision making in data privacy
Bice Cavallo (),
Gerardo Canfora (),
Livia D’Apuzzo () and
Massimo Squillante ()
Quality & Quantity: International Journal of Methodology, 2014, vol. 48, issue 4, 1957-1972
Abstract:
By means of an integration of decision theory and probabilistic models, we explore and develop methods for improving data privacy. Our work encompasses disclosure control tools in statistical databases and privacy requirements prioritization; in particular we propose a Bayesian approach for the on-line auditing in Statistical Databases and Pairwise Comparison Matrices for privacy requirements prioritization. The first approach is illustrated by means of examples in the context of statistical analysis on the census and medical data, where no salary (resp. no medical information), that could be related to a specific employee (resp. patient), must be released; the second approach is illustrated by means of examples, such as an e-voting system and an e-banking service that have to satisfy privacy requirements in addition to functional and security ones. Several fields in the social sciences, economics and engineering will benefit from the advances in this research area: e-voting, e-government, e-commerce, e-banking, e-health, cloud computing and risk management are a few examples of applications for the findings of this research. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Statistical databases; Bayesian networks; Multi-criteria decision support methods (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-013-9859-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:48:y:2014:i:4:p:1957-1972
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-013-9859-8
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().