Graph theoretic methods for the analysis of data in developing systems
Kris Green and
Bernard Ricca ()
Quality & Quantity: International Journal of Methodology, 2015, vol. 49, issue 5, 2037-2060
Abstract:
A full examination of learning or developing systems requires data analysis approaches beyond the commonplace pre-/post-testing. Drawing on graph theory, three particular approaches to the analysis of data—based on adjacency matrices, affiliation networks, and edit distances—can provide additional insight into data; these methods are applied to student performance in a Calculus course. Data analysis methods based on adjacency matrices demonstrate that learning is not unidimensional, that learning progressions do not always progress monotonically toward desired understandings and also provide insight into the connection between instruction and student learning. The use of affiliation networks supports the concept development theory of Lev Vygotsky and also provides insight into how students’ prior knowledge relates to topics being studied. Careful use of edit distances indicates a likely overestimate of effect sizes in many studies, and also provides evidence that concepts are often created in an ad hoc manner. All of these have implications for curriculum and instruction, and indicate some directions for further inquiry. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Graph theory; Concept development; Edit distance; Affiliation networks; Learning progressions (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-014-0089-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:49:y:2015:i:5:p:2037-2060
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-014-0089-5
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().