Fundamental characteristics and statistical analysis of ordinal variables: a review
Michele Lalla ()
Additional contact information
Michele Lalla: University of Modena and Reggio Emilia
Quality & Quantity: International Journal of Methodology, 2017, vol. 51, issue 1, No 25, 435-458
Abstract:
Abstract The measurement of several concepts used in social sciences generates an ordinal variable, which is characterized by rawness of the output values and presents some much debated problems in data analysis. In fact, the need for effective analysis is easily satisfied with parametric models that deal with quantitative variables. However, the peculiarities of the ordinal scales, and the crude values produced by them, limit the use of parametric models, which has generated conflicting favourable and unfavourable views of the parametric approach. The main distinctive features of ordinal scales, some of which are critical points and nodal issues, are illustrated here along with the construction processes. Among the traditional procedures, the most common ordinal scales are described, including the Likert, semantic differential, feeling thermometers, and the Stapel scale. A relative new method, based on fuzzy sets, can be used to handle and generate ordinal variables. Therefore, the structure of a fuzzy inference system is exemplified in synthetic terms to show the treatment of ordinal variables to obtain one or more response variables. The nature of ordinal variables influences the interpretation and selection of many strategies used for their analysis. Four approaches are illustrated (nonparametric, parametric, latent variables, and fuzzy inference system), highlighting their potential and drawbacks. The modelling of an ordinal dependent variable (loglinear models, ordinary parametric models or logit and probit ordinal models, latent class models and hybrid models) is affected by the various approaches.
Keywords: Measurement; Fuzzy sets; Feeling thermometer; Semantic differential; Likert scale; Stapel scale (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11135-016-0314-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:51:y:2017:i:1:d:10.1007_s11135-016-0314-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-016-0314-5
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().