A semantic annotation framework for scientific publications
Yuchul Jung ()
Additional contact information
Yuchul Jung: Korea Institute of Science and Technology Information (KISTI)
Quality & Quantity: International Journal of Methodology, 2017, vol. 51, issue 3, No 4, 1009-1025
Abstract:
Abstract Considering the growing volume of scientific literature, techniques that enable automatic detection of informational entities existing in scientific research articles may contribute to the extension of scientific knowledge and practical usages. Although there have been several efforts to extract informative entities from patent and biomedical research articles, there are few attempts in other scientific literatures. In this paper, we introduce an automatic semantic annotation framework for research articles based on entity recognition techniques. Our approach includes tag set modeling for semantic annotation, semi-automatic annotation tool, manual annotation for training data preparation, and supervised machine learning to develop entity type recognition module. For experiments, we choose two different domains, such as information and communication technology and chemical engineering due to their high usages. In addition, we provide three application scenarios of how our annotation framework can be used and extended further. It is to guide potential researchers who are willing to link their own contents with external data.
Keywords: Entity type recognition; Research article; Structural support vector machine; Semantic annotation; Knowledge construction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11135-016-0369-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:51:y:2017:i:3:d:10.1007_s11135-016-0369-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-016-0369-3
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().