Identification of future signal based on the quantitative and qualitative text mining: a case study on ethical issues in artificial intelligence
Young-Joo Lee () and
Ji-Young Park ()
Additional contact information
Young-Joo Lee: National Information Society Agency (NIA)
Ji-Young Park: National Information Society Agency (NIA)
Quality & Quantity: International Journal of Methodology, 2018, vol. 52, issue 2, No 10, 653-667
Abstract:
Abstract To foresee the advent of new technologies and their socio-economic impact is a necessity for academia, governments and private enterprises as well. In the future studies, the identification of future signal is one of the renowned techniques for analysis of trends, emerging issue, and gaining future insights. In the Big Data era, recent scholars have proposed using a text mining procedure focusing upon web data such as new social media and academic papers. However, the detection of future signals is still under a developing area of research, and there is much to improve existing methodology as well as developing theoretical foundations. The present study reviews previous literature on identifying emerging issue based on the weak signal detection approach. Then the authors proposed a revised framework that incorporate quantitative and qualitative text mining for assessing the strength of future signals. The authors applied the framework to the case study on the ethical issues of artificial intelligence (hereafter AI). From EBSCO host database, the authors collected text data covering the ethical issues in AI and conducted text mining analysis. Results reveal that emerging ethical issues can be classified as strong signal, weak signal, well-known but not so strong signal, and latent signal. The revised methodology will be able to provide insights for government and business stakeholders by identifying the future signals and their meanings in various fields.
Keywords: Future signal; Artificial intelligence; Ethical issue; Text mining; Data-driven foresight (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11135-017-0582-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:52:y:2018:i:2:d:10.1007_s11135-017-0582-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-017-0582-8
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().