EconPapers    
Economics at your fingertips  
 

How well can we estimate immigration trends using Google data?

Philippe Wanner ()
Additional contact information
Philippe Wanner: University of Geneva

Quality & Quantity: International Journal of Methodology, 2021, vol. 55, issue 4, No 2, 1202 pages

Abstract: Abstract For a country to efficiently monitor international migration, quick access to information on migration flows is helpful. However, traditional data sources fail to provide immediate information on migration flows and do not facilitate the correct anticipation of these flows in the short term. To tackle this issue, this paper evaluates the predictive capacity of big data to estimate the current level or to predict short-term flows. The results show that Google Trends can provide information that reflects the attractiveness of Switzerland for to immigrants from different countries and predict, to some extent, current and future (short-term) migration flows of adults arriving from Spain or Italy. However, the predictions appear not to be satisfactory for other flows (from France and Germany). Additional studies based on alternative approaches are needed to validate or overturn our study results.

Keywords: Big data; Forecasting; Immigration trends; Migration estimates; Switzerland (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s11135-020-01047-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:55:y:2021:i:4:d:10.1007_s11135-020-01047-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135

DOI: 10.1007/s11135-020-01047-w

Access Statistics for this article

Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi

More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:qualqt:v:55:y:2021:i:4:d:10.1007_s11135-020-01047-w