EconPapers    
Economics at your fingertips  
 

The promises of persistent homology, machine learning, and deep neural networks in topological data analysis of democracy survival

Badredine Arfi ()
Additional contact information
Badredine Arfi: University of Florida

Quality & Quantity: International Journal of Methodology, 2024, vol. 58, issue 2, No 31, 1685-1727

Abstract: Abstract This paper presents a new approach to survival analysis using topological data analysis (TDA) within Bayesian statistics combined with machine learning algorithms suitable to time-to-event data. The paper brings into the analysis aspects of topological invariance through what is known as persistence homology. TDA demonstrates the existence and statistical significance of a kind of unmeasured heterogeneity originating from the topology of the data as a whole. Combined with machine learning tools persistence homology provides us with new tools to construct a rich set of ways to analyze data and build predictive models that are optimized using inherent topological invariants such as one-dimensional loops as regularization. Specifically, this paper incorporates persistent homology effects in different ways in the analysis of survival data through the technique of functional principal component analysis (FPCA): first, by using topological invariants converted into FPCA factors that shape Bayesian statistical analysis of time-to-event data; second, by using FPCA measures of topological invariants in regularizing the process of optimizing the data and the posterior distributions of the Bayesian estimation; three, by using FPCA factors of measures of topological invariants in machine learning algorithms and deep neural networks suitable for analyzing survival data as a way of going beyond usual parametric and semi-parametric models of survival analysis. The approach is illustrated through a running example of multi-frailty survival analysis of democracies in the period of 1950–2010.

Keywords: Topological data analysis; Persistent homology; Machine learning; Deep neural networks; Bayesian multi-frailty survival analysis; Democracy breakdown (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11135-023-01708-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01708-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135

DOI: 10.1007/s11135-023-01708-6

Access Statistics for this article

Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi

More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01708-6