Core allocation to minimize total flow time in a multicore system in the presence of a processing time constraint
Rein Vesilo ()
Additional contact information
Rein Vesilo: Macquarie University
Queueing Systems: Theory and Applications, 2024, vol. 108, issue 3, No 7, 475-577
Abstract:
Abstract Data centers are a vital and fundamental infrastructure component of the cloud. The requirement to execute a large number of demanding jobs places a premium on processing capacity. Parallelizing jobs to run on multiple cores reduces execution time. However, there is a decreasing marginal benefit to using more cores, with the speedup function quantifying the achievable gains. A critical performance metric is flow time. Previous results in the literature derived closed-form expressions for the optimal allocation of cores to minimize total flow time for a power-law speedup function if all jobs are present at time 0. However, this work did not place a constraint on the makespan. For many diverse applications, fast response times are essential, and latency targets are specified to avoid adverse impacts on user experience. This paper is the first to determine the optimal core allocations for a multicore system to minimize total flow time in the presence of a completion deadline (where all jobs have the same deadline). The allocation problem is formulated as a nonlinear optimization program that is solved using the Lagrange multiplier technique. Closed-form expressions are derived for the optimal core allocations, total flow time, and makespan, which can be fitted to a specified deadline by adjusting the value of a single Lagrange multiplier. Compared to the unconstrained problem, the shortest job first property for optimal allocation is maintained; however, a number of other properties require revising and other properties are only retained in a modified form (such as the scale-free and size-dependence properties). It is found that with a completion deadline the optimal solution may contain groups of simultaneous completions. In general, all possible patterns of single- and group-completion need to be considered, producing an exponential search space. However, the paper determines analytically that the optimal completion pattern consists of a sequence of single completions followed by a single group of simultaneous completions at the end, which reduces the search space dimension to being linear. The paper validates the Lagrange multiplier approach by verifying constraint qualifications.
Keywords: Data center; Multicore; Speedup function; Flow time; Optimization; 68M20; 60K30; 90C30 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11134-024-09923-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:queues:v:108:y:2024:i:3:d:10.1007_s11134-024-09923-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11134/
DOI: 10.1007/s11134-024-09923-0
Access Statistics for this article
Queueing Systems: Theory and Applications is currently edited by Sergey Foss
More articles in Queueing Systems: Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().