Asymptotic independence of servers’ activity in queueing systems with limited resource pooling
Virag Shah () and
Gustavo Veciana ()
Additional contact information
Virag Shah: The University of Texas at Austin
Gustavo Veciana: The University of Texas at Austin
Queueing Systems: Theory and Applications, 2016, vol. 83, issue 1, No 2, 13-28
Abstract:
Abstract We consider multi-class multi-server queuing systems where a subset of servers, called a server pool, may collaborate in serving jobs of a given class. The pools of servers associated with different classes may overlap, so the sharing of server resources across classes is done via a dynamic allocation policy based on a fairness criterion. We consider an asymptotic regime where the total load increases proportionally with the system size. We show that under limited scaling in size of server pools the stationary distribution for activity of a fixed finite subset of servers has asymptotically a product form, which in turn implies a concentration result for server activity. In particular, we establish a clear connection between the scaling of server pools’ size and asymptotic independence. Further, these results are robust to the service requirement distribution of jobs. For large-scale cloud systems where heterogeneous pools of servers collaborate in serving jobs of diverse classes, a concentration in server activity indicates that the overall power and network capacity that need to be provisioned may be substantially lower than the worst case, thus reducing costs.
Keywords: Resource pooling; Server activity; Concentration; Mean field; Insensitivity; Power; Network capacity; 60K25 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11134-016-9475-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:queues:v:83:y:2016:i:1:d:10.1007_s11134-016-9475-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11134/
DOI: 10.1007/s11134-016-9475-0
Access Statistics for this article
Queueing Systems: Theory and Applications is currently edited by Sergey Foss
More articles in Queueing Systems: Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().