On classes of Bitcoin-inspired infinite-server queueing systems
Brian Fralix ()
Additional contact information
Brian Fralix: Clemson University
Queueing Systems: Theory and Applications, 2020, vol. 95, issue 1, No 2, 29-52
Abstract:
Abstract We analyze the time-dependent behavior of various types of infinite-server queueing systems, where, within each system we consider, jobs interact with one another in ways that induce batch departures from the system. One example of such a queue was introduced in the recent paper of Frolkova and Mandjes (Stochastic Models, 2019) in order to model a type of one-sided communication between two users in the Bitcoin network: here we show that a time-dependent version of the distributional Little’s law can be used to study the time-dependent behavior of this model, as well as a related model where blocks are communicated to a user at a rate that is allowed to vary with time. We also show that the time-dependent behavior of analogous infinite-server queueing systems with batch arrivals and exponentially distributed services can be analyzed just as thoroughly.
Keywords: Batch departures; Bitcoin; Infinite-server queue; Synchronization; Time-dependent behavior; 60K25; 60J28; 60G55 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11134-019-09643-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:queues:v:95:y:2020:i:1:d:10.1007_s11134-019-09643-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11134/
DOI: 10.1007/s11134-019-09643-w
Access Statistics for this article
Queueing Systems: Theory and Applications is currently edited by Sergey Foss
More articles in Queueing Systems: Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().