Bargaining power in stationary parallelogram games
Bart Taub () and
Özgür Kıbrıs
Review of Economic Design, 2004, vol. 8, issue 4, 449-464
Abstract:
A stationary variant of the repeated prisoners’ dilemma in which the game frontier is a parallelogram is analyzed. By using the probabilistic cheap talk concept of [3], the discount factor becomes fungible, and for a critical value of the discount factor a unique Pareto-optimal and Pareto-dominant solution can be found. The relative bargaining power of the players can be quantified in terms of the shape of the parallelogram. If the parallelogram is asymmetric, the solution results in an asymmetric allocation of payoffs. Players with more bargaining power receive a greater share of the allocation. The solution satisfies some standard bargaining axioms within the class of parallelogram games. A characterization is provided in terms of these axioms and one new axiom, weak-monotonicity, which is in the spirit of, but different from, the Kalai-Smorodinsky restricted-monotonicity axiom. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10058-004-0114-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:reecde:v:8:y:2004:i:4:p:449-464
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10058
DOI: 10.1007/s10058-004-0114-6
Access Statistics for this article
Review of Economic Design is currently edited by Atila Abdulkadiroglu, Fuhito Kojima and Tilman Börgers
More articles in Review of Economic Design from Springer, Society for Economic Design
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().