Growth Curve Model with Bilinear Random Coefficients
Shinpei Imori (),
Dietrich Rosen and
Ryoya Oda
Additional contact information
Shinpei Imori: Hiroshima University
Dietrich Rosen: Swedish University of Agricultural Sciences
Ryoya Oda: Hiroshima University
Sankhya A: The Indian Journal of Statistics, 2022, vol. 84, issue 2, No 4, 477-508
Abstract:
Abstract In the present paper, we derive a new multivariate model to fit correlated data, representing a general model class. Our model is an extension of the Growth Curve model (also called generalized multivariate analysis of variance model) by additionally assuming randomness of regression coefficients like in linear mixed models. Each random coefficient has a linear or a bilinear form with respect to explanatory variables. In our model, the covariance matrices of the random coefficients is allowed to be singular. This yields flexible covariance structures of response data but the parameter space includes a boundary, and thus maximum likelihood estimators (MLEs) of the unknown parameters have more complicated forms than the ordinary Growth Curve model. We derive the MLEs in the proposed model by solving an optimization problem, and derive sufficient conditions for consistency of the MLEs. Through simulation studies, we confirmed performance of the MLEs when the sample size and the size of the response variable are large.
Keywords: Consistency; Growth curve model; Maximum likelihood estimators; Random coefficients.; Primary 62H12; Secondary 62J05 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13171-020-00204-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-020-00204-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171
DOI: 10.1007/s13171-020-00204-5
Access Statistics for this article
Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().