EconPapers    
Economics at your fingertips  
 

Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup

Brajendra C. Sutradhar ()
Additional contact information
Brajendra C. Sutradhar: Carleton University

Sankhya A: The Indian Journal of Statistics, 2022, vol. 84, issue 2, No 14, 743-789

Abstract: Abstract In a finite/survey population setup, where categorical/multinomial responses are collected from individuals belonging to a cluster, in a recent study Skinner (International Statistical Review, 87, S64-S78 2019) has modeled the means of the clustered categorical responses as a function of regression parameters, and suggested a ‘working’ correlations based GEE (generalized estimating equations) approach for the estimation of the regression parameters. However, this mean model involving only regression parameters is not justified for clustered multinomial responses because of the fact that these responses share a common cluster effect which compels the clustered correlation parameter to enter into the mean function on top of the regression parameters. Consequently, the so-called GEE approach, which requires the means to be free of correlations, is not applicable for regression analysis in the clustered multinomial setup. As a remedy, in this paper we consider a multinomial mixed model which accommodates the clustered correlation parameter in the mean functions. For inferences in the present finite population setup, as the GQL (generalized quasi-likelihood) approach is known to produce consistent and more efficient estimate than the MM (method of moments) approach in an infinite population setup, we estimate the regression parameters of primary interest by using the first order response based survey weighted GQL (WGQL) approach. For the estimation of the random effects variance (also known as clustered correlation) parameter, as it is of secondary interest, we use the second order response based survey weighted MM (WMM) approach, which is simpler than the corresponding WGQL estimation approach. The estimation steps are presented clearly for the benefit to the practitioners. Also because, in practice, survey practitioners such as statistical agencies frequently deal with a large health or socio-economic data set at national or state levels, for example, we make sure for their benefit that our proposed WGQL and WMM estimators are consistent. Thus, the asymptotic properties such as asymptotic unbiasedness and consistency for both regression and clustered correlation parameters are studied in details. The asymptotic normality property, for the benefit of constructing confidence interval for the main regression parameters, is also studied.

Keywords: Clustered categorical data; Clustered correlations through common random effect; Complex survey design; Consistency; Correct mean specification; Finite/survey population setup; Generalized quasi-likelihood and method of moments estimation; Large sample properties; Normality; Survey weighted estimation; Primary 62F10, 62H20; Secondary 62F12 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13171-020-00215-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-020-00215-2

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171

DOI: 10.1007/s13171-020-00215-2

Access Statistics for this article

Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey

More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-020-00215-2