The Confidence Density for Correlation
Gunnar Taraldsen ()
Additional contact information
Gunnar Taraldsen: Norwegian University of Science and Technology
Sankhya A: The Indian Journal of Statistics, 2023, vol. 85, issue 1, No 23, 600-616
Abstract:
Abstract Inference for correlation is central in statistics. From a Bayesian viewpoint, the final most complete outcome of inference for the correlation is the posterior distribution. An explicit formula for the posterior density for the correlation for the binormal is derived. This posterior is an optimal confidence distribution and corresponds to a standard objective prior. It coincides with the fiducial introduced by R.A. Fisher in 1930 in his first paper on fiducial inference. C.R. Rao derived an explicit elegant formula for this fiducial density, but the new formula using hypergeometric functions is better suited for numerical calculations. Several examples on real data are presented for illustration. A brief review of the connections between confidence distributions and Bayesian and fiducial inference is given in an Appendix.
Keywords: Exact distribution; measures of association; Bayesian posterior; Fiducial; Fisher z-transform; Marginalization paradox; 62E15; 62F15; 62A01; 62H20; 62F25 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13171-021-00267-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-021-00267-y
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171
DOI: 10.1007/s13171-021-00267-y
Access Statistics for this article
Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().