Author name disambiguation using a graph model with node splitting and merging based on bibliographic information
Dongwook Shin (),
Taehwan Kim (),
Joongmin Choi () and
Jungsun Kim ()
Additional contact information
Dongwook Shin: Hanyang University
Taehwan Kim: Hanyang University
Joongmin Choi: Hanyang University
Jungsun Kim: Hanyang University
Scientometrics, 2014, vol. 100, issue 1, No 2, 15-50
Abstract:
Abstract Author ambiguity mainly arises when several different authors express their names in the same way, generally known as the namesake problem, and also when the name of an author is expressed in many different ways, referred to as the heteronymous name problem. These author ambiguity problems have long been an obstacle to efficient information retrieval in digital libraries, causing incorrect identification of authors and impeding correct classification of their publications. It is a nontrivial task to distinguish those authors, especially when there is very limited information about them. In this paper, we propose a graph based approach to author name disambiguation, where a graph model is constructed using the co-author relations, and author ambiguity is resolved by graph operations such as vertex (or node) splitting and merging based on the co-authorship. In our framework, called a Graph Framework for Author Disambiguation (GFAD), the namesake problem is solved by splitting an author vertex involved in multiple cycles of co-authorship, and the heteronymous name problem is handled by merging multiple author vertices having similar names if those vertices are connected to a common vertex. Experiments were carried out with the real DBLP and Arnetminer collections and the performance of GFAD is compared with three representative unsupervised author name disambiguation systems. We confirm that GFAD shows better overall performance from the perspective of representative evaluation metrics. An additional contribution is that we released the refined DBLP collection to the public to facilitate organizing a performance benchmark for future systems on author disambiguation.
Keywords: Author name disambiguation; Graph model; Namesake resolution; Heteronymous name resolution; Digital library (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-014-1289-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:100:y:2014:i:1:d:10.1007_s11192-014-1289-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-014-1289-4
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().