Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities
Ansgar Moeller () and
Martin G. Moehrle
Additional contact information
Ansgar Moeller: University of Bremen
Martin G. Moehrle: University of Bremen
Scientometrics, 2015, vol. 102, issue 1, No 5, 77-96
Abstract:
Abstract Patent search is a substantial basis for many operational questions and scientometric evaluations. We consider it as a sequence of distinct stages. The “patent wide search” involves a definition of system boundaries by means of classifications and a keyword search producing a patent set with a high recall level (see Schmitz in Patentinformetrie: Analyse und Verdichtung von technischen Schutzrechtsinformationen, DGI, Frankfurt (Main), 2010 with an overview of searchable patent meta data). In this set of patents a “patent near search” takes place, producing a patent set with high(er) precision. Hence, the question arises how the researcher has to operate within this patent set to efficiently identify patents that contain paraphrased descriptions of the sought inventive elements in contextual information and whether this produces different results compared to a conventional search. We present a semiautomatic iterative method for the identification of such patents, based on semantic similarity. In order to test our method we generate an initial dataset in the course of a patent wide search. This dataset is then analyzed by means of the semiautomatic iterative method as well as by an alternative method emulating the conventional process of keyword refinement. It thus becomes obvious that both methods have their particular “raison d’être”, and that the semiautomatic iterative method seems to be able to support a conventional patent search very effectively.
Keywords: Patent search; Keyword search; Semantic search; Text mining; Similarity measurement; n-grams (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-014-1446-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:102:y:2015:i:1:d:10.1007_s11192-014-1446-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-014-1446-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().