Bibliographic coupling and hierarchical clustering for the validation and improvement of subject-classification schemes
Bart Thijs (),
Lin Zhang and
Wolfgang Glänzel
Additional contact information
Bart Thijs: KU Leuven
Lin Zhang: KU Leuven
Wolfgang Glänzel: KU Leuven
Scientometrics, 2015, vol. 105, issue 3, No 6, 1453-1467
Abstract:
Abstract An attempt is made to cluster journals from the complete Web of Science database by using bibliographic coupling similarities. Since the sparseness of the underlying similarity matrix proved inappropriate for this exercise, second-order similarities have been used. Only 0.12 % out of 8282 journals had to be removed from the classification as being singletons. The quality at three hierarchical levels with 6, 14 and 24 clusters substantiated the applicability of this method. Cluster labelling was made on the basis of the about 70 subfields of the Leuven–Budapest subject-classification scheme that also allowed the comparison with the existing two-level journal classification system developed in Leuven. The further comparison with the 22 field classification system of the Essential Science Indicators does, however, reveal larger deviations.
Keywords: Bibliographic coupling; Journal clustering; Second order similarities; Subject classification (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-015-1641-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1641-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-015-1641-3
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().