Classifying modeling and simulation as a scientific discipline
Ross Gore (),
Saikou Diallo () and
Jose Padilla ()
Additional contact information
Ross Gore: Old Dominion University
Saikou Diallo: Old Dominion University
Jose Padilla: Old Dominion University
Scientometrics, 2016, vol. 109, issue 2, No 1, 615-628
Abstract:
Abstract The body of knowledge related to modeling and simulation (M&S) comes from a variety of constituents: (1) practitioners and users, (2) tool developers and (3) theorists and methodologists. Previous work has shown that categorizing M&S as a concentration in an existing, broader disciple is inadequate because it does not provide a uniform basis for research and education across all institutions. This article presents an approach for the classification of M&S as a scientific discipline and a framework for ensuing analysis. The novelty of the approach lies in its application of machine learning classification to documents containing unstructured text (e.g. publications, funding solicitations) from a variety of established and emerging disciplines related to modeling and simulation. We demonstrate that machine learning classification models can be trained to accurately separate M&S from related disciplines using the abstracts of well-index research publication repositories. We evaluate the accuracy of our trained classifiers using cross-fold validation. Then, we demonstrate that our trained classifiers can effectively identify a set of previously unseen M&S funding solicitations and grant proposals. Finally, we use our approach to uncover new funding trends in M&S and support a uniform basis for education and research.
Keywords: Simulation; Research; History of OR; Machine learning (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-016-2050-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:109:y:2016:i:2:d:10.1007_s11192-016-2050-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-016-2050-y
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().