Agent-based simulation for science, technology, and innovation policy
Petra Ahrweiler ()
Additional contact information
Petra Ahrweiler: EA European Academy of Technology and Innovation Assessment
Scientometrics, 2017, vol. 110, issue 1, No 25, 415 pages
Abstract:
Abstract Policymaking implies planning, and planning requires prediction—or at least some knowledge about the future. This contribution starts from the challenges of complexity, uncertainty, and agency, which refute the prediction of social systems, especially where new knowledge (scientific discoveries, emergent technologies, and disruptive innovations) is involved as a radical game-changer. It is important to be aware of the fundamental critiques, approaches, and fields such as Technology Assessment, the Forrester World Models, Economic Growth Theory, or the Linear Model of Innovation have received in the past decades. It is likewise important to appreciate the limitations and consequences these diagnoses pose on science, technology and innovation policy (STI policy). However, agent-based modeling and simulation now provide new options to address the challenges of planning and prediction in social systems. This paper will discuss these options for STI policy with a particular emphasis on the contribution of the social sciences both in offering theoretical grounding and in providing empirical data. Fields such as Science and Technology Studies, Innovation Economics, Sociology of Knowledge/Science/Technology etc. inform agent-based simulation models in a way that realistic representations of STI policy worlds can be brought to the computer. These computational STI worlds allow scenario analysis, experimentation, policy modeling and testing prior to any policy implementations in the real world. This contribution will illustrate this for the area of STI policy using examples from the SKIN model. Agent-based simulation can help us to shed light into the darkness of the future—not in predicting it, but in coping with the challenges of complexity, in understanding the dynamics of the system under investigation, and in finding potential access points for planning of its future offering “weak prediction”.
Keywords: Science; Technology & innovation; Policy modelling; Social simulation; Ex-ante evaluation; SKIN model; 91B74; 91D10; 91-08 (search for similar items in EconPapers)
JEL-codes: C63 O32 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-016-2105-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:110:y:2017:i:1:d:10.1007_s11192-016-2105-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-016-2105-0
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().