Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset
Wolfgang Glänzel () and
Bart Thijs
Additional contact information
Wolfgang Glänzel: KU Leuven
Bart Thijs: KU Leuven
Scientometrics, 2017, vol. 111, issue 2, No 25, 1087 pages
Abstract:
Abstract Based on a dataset on Astronomy and Astrophysics, hybrid cluster analyses have been conducted. In order to obtain an optimum solution and to analyse possible issues resulting from the bibliometric methodologies used, we have systematically studied three models and, within these models, two scenarios each. The hybrid clustering was based on a combination of bibliographic coupling and textual similarities using the Louvain method at two resolution levels. The procedure resulted in three clearly hierarchical structures with six and thirteen, seven and thirteen and finally five and eleven clusters, respectively. These structures are analysed with the help of a concordance table. The statistics reflect a high quality of classification. The results of these three models are presented, discussed and compared with each other. For labelling and interpreting clusters, core documents representing the obtained clusters are used. Furthermore, these core documents help depict the internal structure of the complete network and the clusters. This work has been done as part of the international project ‘Measuring the Diversity of Research’ and in the framework a special workshop on the comparative analysis of algorithms for the identification of topics in science organised in Berlin in August 2014.
Keywords: Astronomy; Astrophysics; Clustering; NLP; Bibliographic coupling; Hybrid clustering; Core documents (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-017-2301-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:111:y:2017:i:2:d:10.1007_s11192-017-2301-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-017-2301-6
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().