How to standardize (if you must)
Marcello D’Agostino (),
Valentino Dardanoni () and
Roberto Ghiselli Ricci
Additional contact information
Marcello D’Agostino: University of Milan
Scientometrics, 2017, vol. 113, issue 2, No 8, 825-843
Abstract:
Abstract In many situations we are interested in appraising the value of a certain characteristic for a given individual relative to the context in which this value is observed. In recent years this problem has become prominent in the evaluation of scientific productivity and impact. A popular approach to such relative valuations consists in using percentile ranks. This is a purely ordinal method that may sometimes lead to counterintuitive appraisals, in that it discards all information about the distance between the raw values within a given context. By contrast, this information is partly preserved by using standardization, i.e., by transforming the absolute values in such a way that, within the same context, the distance between the relative values is monotonically related to the distance between the absolute ones. While there are many practically useful alternatives for standardizing a given characteristic across different contexts, the general problem seems to have never been addressed from a theoretical and normative viewpoint. The main aim of this paper is to fill this gap and provide a conceptual framework that allows for this kind of systematic investigation. We then use this framework to prove that, under some rather weak assumptions, the general format of a standardization function can be determined quite sharply.
Keywords: Standardization; Normalization; z-score; m-score; Location statistics; Dispersion statistics; Citation analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-017-2495-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:113:y:2017:i:2:d:10.1007_s11192-017-2495-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-017-2495-7
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().