RTRS: a recommender system for academic researchers
Mohammad Mahbub Alam () and
Maizatul Akmar Ismail
Additional contact information
Mohammad Mahbub Alam: University of Malaya
Maizatul Akmar Ismail: University of Malaya
Scientometrics, 2017, vol. 113, issue 3, No 6, 1325-1348
Abstract:
Abstract The ever-evolving nature of research works creates the cacophony of new topics incessantly resulting in an unstable state in every field of research. Researchers are disseminating their works producing a huge volume of articles. In fact, the spectacular growth in scholarly literature is widening the choice sets overwhelmingly for researchers. Consequently, they face difficulties in identifying a suitable topic of current importance from a plethora of research topics. This remains an ill-defined problem for researchers due to the overload of choices. The problem is even more severe for new researchers due to the lack of experience. Hence, there is a definite need for a system that would help researchers make decisions on appropriate topics. Recommender systems are good options for performing this very task. They have been proven to be useful for researchers to keep pace with research dynamics and at the same time to overcome the information overload problem by retrieving useful information from the large information space of scholarly literature. In this article, we present RTRS, a knowledge-based Research Topics Recommender System to assist both novice and experienced researchers in selecting research topics in their chosen field. The core of this system hinges upon bibliometric information of the literature. The system identifies active research topics in a particular area and recommends top N topics to the target users. The results obtained have proven useful to academic researchers, particularly novices, in making an early decision on research topics.
Keywords: Knowledge based recommender system; Research topics; Bibliometrics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-017-2548-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:113:y:2017:i:3:d:10.1007_s11192-017-2548-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-017-2548-y
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().